Smoothed state estimates under abrupt changes using sum-of-norms regularization
نویسندگان
چکیده
The presence of abrupt changes, such as impulsive and load disturbances, commonly occur in applications, but make the state estimation problem considerably more difficult than in the standard setting with Gaussian process disturbance. Abrupt changes often introduce a jump in the state, and the problem is therefore readily and often treated by change detection techniques. In this paper, we take a different approach. The state smoothing problem for linear state space models is here formulated as a constrained least-squares problem with sum-of-norms regularization, a generalization of `1-regularization. This novel formulation can be seen as a convex relaxation of the well known generalized likelihood ratio method by Willsky and Jones. Another nice property of the suggested formulation is that it only has one tuning parameter, the regularization constant which is used to trade off fit and the number of jumps. Good practical choices of this parameter along with an extension to nonlinear state space models are given.
منابع مشابه
Segmentation of ARX-models Using Sum-of-Norms Regularization, Report no. LiTH-ISY-R-2941
Segmentation of time-varying systems and signals into models whose parameters are piecewise constant in time is an important and well studied problem. It is here formulated as a least-squares problem with sum-ofnorms regularization over the state parameter jumps, a generalization of `1-regularization. A nice property of the suggested formulation is that it only has one tuning parameter, the reg...
متن کاملIdentification of switched linear regression models using sum-of-norms regularization
This paper proposes a general convex framework for the identification of switched linear systems. The proposed framework uses over-parameterization to avoid solving the otherwise combinatorially forbidding identification problem and takes the form of a least-squares problem with a sum-of-norms regularization, a generalization of the `1-regularization. The regularization constant regulates compl...
متن کاملSegmentation of ARX-models using sum-of-norms regularization
Segmentation of time-varying systems and signals into models whose parameters are piecewise constant in time is an important and well studied problem. It is here formulated as a least-squares problem with sumof-norms regularization over the state parameter jumps, a generalization of `1-regularization. A nice property of the suggested formulation is that it only has one tuning parameter, the reg...
متن کاملl1 Trend Filtering
The problem of estimating underlying trends in time series data arises in a variety of disciplines. In this paper we propose a variation on Hodrick-Prescott (H-P) filtering, a widely used method for trend estimation. The proposed l1 trend filtering method substitutes a sum of absolute values (i.e., an l1-norm) for the sum of squares used in H-P filtering to penalize variations in the estimated ...
متن کامل1 Trend Filtering
The problem of estimating underlying trends in time series data arises in a variety of disciplines. In this paper we propose a variation on Hodrick–Prescott (H-P) filtering, a widely used method for trend estimation. The proposed !1 trend filtering method substitutes a sum of absolute values (i.e., !1 norm) for the sum of squares used in H-P filtering to penalize variations in the estimated tre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 48 شماره
صفحات -
تاریخ انتشار 2012